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Quadratic Programming (QP) Taking advantage of the COSMIC mutational signature matrix
P, as columns of P are linearly independent so PTP is positive definite, our minimization problem
is equivalent to optimization of a strictly convex quadratic problem. Dual method [1] is an excellent
technique to get efficient and numerically stable solutions to this kinds of quadratic problems by
utilizing the Cholesky and QR factorizations and updating procedures. Our objective function can
be re-written as:

min
E

(M-PE)T (M-PE) s.t.: CTE − b ≥ 0

where

C =

1 1 · · · 0
... 0

. . . 0
1 0 0 1


N×N+1

b =


1
0
...
0


N+1×1

and the first constraint here is an equality constraint, and all further are inequality constraints. And
further we can re-write the problem in the form of a problem solved by the dual method:

min
E

aTE +
1

2
ETGE s.t.: CTE − b ≥ 0

where aT = −MTP, G = PTP. Note that G is positive definite for the COSMIC matrix P.
By calling function solve.QP from the R package quadprog, our optimization problem is solved

very fast in less than 30 iterations on average. A similar approach based on QP was also suggested
by Lynch [2].

Simulated annealing (SA) One of the generically popular optimization algorithms is simulated
annealing, a method that simulates the annealing process in metallurgy to find a global minimum
of the objective function. We used the generalized simulated annealing (GSA) approach [3], im-
plemented in the R package GenSA [4], as it has been widely used as a global optimization tool
for multidimensional functions. The GSA method propose new schemas for visiting distribution,
accepting rule, and cooling schedule. The main improvement of the Tsallis statistics [3] lies in the
use of a distorted Cauchy-Lorentz distribution, instead of the Gaussian distribution as in the clas-
sical SA [5], to randomly generate a neighboring state to visit. Such visiting distribution allows
frequently local jumps, but occasionally the jumps can be quite long. GSA is able to accurately
locate the absolute minimum of a given function, and convergence is reached much more rapidly
than in the classical SA.



Synthetic datasets For each synthetic dataset, we randomly picked operating signatures, se-
lected their contributions and computed a corresponding synthetic mutational profile. Such profile
was decomposed into predefined signatures using each of three methods (dS, SA and QP). The in-
ferred signature contribution were compared with the known ground truth contributions of synthetic
dataset using the cosine distance. We tested the methods’ performance on 1000 synthetic datasets
generated based on breast cancer signatures.
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Fig. S1. Comparison of three decomposition methods on 1000 synthetic datasets. For each method, distribution of
cosine distance between inferred signature contributions and the ground truth contributions of synthetic datasets is
shown.
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Fig. S2. Pearson’s correlation between COSMIC mutational signatures.
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